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ABSTRACT

A complete description of two outgoing electrons following
an ionizing collision between a single electron and an atom
or molecule has long stood as one of the unsolved funda-
mental problems in quantum collision theory. In this paper
we describe our use of distributed memory parallel comput-
ers to calculate a fully converged wave function describing
the electron-impact ionization of hydrogen. Our approach
hinges on a transformation of the Schrodinger equation that
simplifies the boundary conditions but requires solving very
ill-conditioned systems of a few million complex, sparse lin-
ear equations. We developed a two-level iterative algorithm
that requires repeated solution of sets of a few hundred thou-
sand linear equations. These are solved directly by LU-
factorization using a specially tuned, distributed memory
parallel version of the sparse LU-factorization library Su-
perLU. In smaller cases, where direct solution is technically
possible, our iterative algorithm still gives significant savings
in time and memory despite lower megaflop rates.

1. INTRODUCTION

This paper describes our use of massively parallel pro-
cessing (MPP) computers to solve a long-standing, funda-
mental problem in atomic physics. Our work produced the
first calculations of detailed information about two outgoing
electrons following an ionizing collision between an electron
and a hydrogen atom that agree with experiment over a wide
range of energies and angles [21, 4, 5, 13]. We calculate a six-
dimensional wave function by solving the time-independent
Schrodinger equation using a mathematical transformation
to simplify the scattering boundary conditions. This re-
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quires solving several large (on the order of 1.2 to 8 million)
sets of complex, sparse linear equations that are very ill-
conditioned.

For this we developed a specialized, two-level iterative al-
gorithm. As a preconditioning step in iteratively solving the
full set of equations we repeatedly solve moderately large
sets (between 209,764 and 334,084) of complex, sparse lin-
ear equations. These, in turn, are solved iteratively using
the direct solution of a simpler set of equations as a precon-
ditioner. To accomplish the inner preconditioning step we
use a parallel version of the sparse LU-factorization library
SuperLU [11, 14] with enhanced capabilities to handle com-
plex data types and to solve multiple independent systems
simultaneously on separate groups of processors. Our codes
are written in Fortran 90 and C using MPI for communica-
tion and have been used on a Cray T3E-900 and an IBM
SP.

The scientific breakthrough could not have been achieved
without our newly developed algorithms and parallel pro-
cessing capabilities outlined below:

e A new mathematical transformation for solving the
time-independent Schrodinger equation makes the nu-
merical computational task feasible.

e A mnon-conventional, parallel, two-level iterative algo-
rithm for solving complex linear systems that are very
large, sparse and ill-conditioned. In particular, our
parallel preconditioner using SuperLU is crucial for
convergence.

e Demonstrated high performance in solving systems of
equations as large as 8 million taking between 40 and
140 minutes and using up to 96 processors.

The rest of the paper is organized as follows. In Sec-
tion 2, we discuss the scientific application, the obstacles to
performing accurate calculation, and survey the earlier at-
tempts in solving this problem. Section 3 describes our new
mathematical formulation for this problem and the resulting
sparse linear systems. One major contribution is a simpli-
fied fomulation of the scattering boundary conditions that
make the computational tasks tractable. Section 4 gives an
overview of our parallel solver strategy and compares with
some other solution techniques. Section 5 discusses the it-
erative algorithm and performance for the uncoupled equa-
tions, and the preconditioner in particular. Solutions of the
uncoupled equations are used as preconditioning to solve
the fully coupled equations, the details of which are given



in Section 6. Finally, in Section 7 we highlight the scientific
results obtained through this computation.

2. SCIENTIFIC APPLICATION

If the collision between a target atom (or molecule) and an
electron is of sufficiently high energy then there is some prob-
ability that the collision will result in detaching an electron,
originally bound to the target. This process is known as
electron-impact ionization and is characterized by an initial
state with a single electron incident on the target followed
by a final state with two electrons outgoing from the ionized
target. The two-outgoing electrons make electron-impact
ionization much more difficult to treat than other electron-
scattering events, such as excitation of the target and elastic
scattering, that have only one outgoing electron in the final
state. A complete theoretical description of electron-impact
ionization requires the solution of a three-body problem in
quantum mechanics that is further complicated by the exis-
tance of long-range, Coulomb interactions between all three
particles in the final state.

Electron-impact ionization is one of the most basic phe-
nomena in low-energy collision physics. It is the fundamen-
tal mechanism for ion formation in mass spectroscopy and
is responsible for forming and sustaining low-temperature
plasmas that are used in applications ranging from fluores-
cent lighting to the processing of silicon chips. A better un-
derstanding of this basic phenomenon will lead to the abil-
ity to better understand and model macroscopic phenom-
ena in low-temperature plasmas that are important in the
atmospheric sciences, astrophysics, and a variety of indus-
trial applications. Despite its importance, it is only recently
that, with the aid of MPP, we have achieved what could be
considered a complete description of electron-impact ioniza-
tion of the simplest atomic target — a ground state hydrogen
atom.

Probabilities for collision events are traditionally expressed
in units of area and are referred to as cross sections. The
ionization cross section, then, gives the probability that an
atom will be ionized by collision with an electron at a par-
ticular incident energy. A complete theoretical description
means calculating differential cross sections that give prob-
ability distributions for the final energies and directions of
both outgoing electrons. The primary obstacle to doing this
is the difficulty in formulating the correct scattering bound-
ary conditions for the two outgoing electrons. Much of the
work on the mathematical theory of ionization, beginning in
the 1960s [18, 23], has been in developing asymptotic forms
of the wave function. So far, no such asymptotic that could
be used in an actual calculation have been developed.

The leading approaches to treating electron-atom scat-
tering above the ionization threshold have been attempts
to extend close-coupling formalisms, which work well for
two-body processes such as discrete excitations of the atom
and elastic scattering, to the three-body problem of ioniza-
tion [10, 8]. The most successful of these, the convergent
close-coupling method has produced accurate total ioniza-
tion cross sections, but failed to converge to the correct
differential cross sections [9]. Other approaches are based
on various approximations that limit their usefulness, when
they work at all, to very specific geometries [17, 25]. One
method that has recently been shown to be capable of pro-
ducing correct differential cross sections for ionization [6] in-
volves propagation of the time-dependent Schrodinger equa-

tion [19]. However, this method is very computationally in-
tensive and has yet to produce converged results.

Our approach builds on the early, formal theory but ob-
viates the need to specify the exact scattering boundary
conditions by using a mathematical transformation of the
Schrodinger equation. Although this transformation makes
the boundary conditions tractable, its implementation re-
quires solving very large sets of complex, sparse linear equa-
tions. Furthermore, the systems are very ill-conditioned. By
developing specialized algorithms for solving these systems
of equations on distributed memory, parallel supercomput-
ers we have achieved the ability to calculate arbitrarily accu-
rate, time-independent wave functions describing electron-
hydrogen scattering above the ionization threshold. From
these wave functions we can extract any differential cross
section for ionization providing, for the first time, a com-
plete description of electron-impact ionization.

3. MATHEMATICAL FORMALISM
3.1 Differential equation

There are no explicitly time dependent interactions so the
system can be described by a wave function ¥7T that is a
solution to the time-independent Schrodinger equation,

HUT = EUt (1)

where E is the total energy of the system and H is the Hamil-
tonian describing the interaction of two electrons with each
other and with the nucleus. The nucleus is assumed to be in-
finitely massive and fixed in space so ¥¥ is a six-dimensional
function of the coordinates (1'1 and 1'2) for the two electrons
relative to the nucleus. As a first step in correctly treat-
ing the boundary conditions of U* we partition it into two
terms,

\If+(I'1,I'2) = qul(rl,rz) + \If:-c(l‘l,l‘z) . (2)

The initial state of an electron with momentum k; incident
on a ground state hydrogen atom is described by \If%l,

Vi = 25 [ @1 (r)e™ ™2 4 (c0s@u(r2)e™ M (3)
which is either symmetric (for total spin S = 0) or anti-

symmetric (S = 1) with respect to interchange of the elec-
trons’ coordinates. The remaning term, W} is referred to as
the scattered wave and contains all of the scattering infor-
mation in its asymptotic (large distances) limit. Although
the asymptotic form of ¥ still cannot be stated explicitly
we do know that at large distances ¥} is a purely outgo-
ing wave. The scattered wave is calculated by solving the
inhomogeneous differential equation

(E—H)UX(r1,r2) = (H— E)UY, (r1,12), (4)

that comes from rearrangement of the Schrodinger equation,
with outgoing wave boundary conditions on W} .

3.2 Angular momentum expansion

The six-dimensional differential equation in Eq. 4 is con-
verted to sets of coupled two-dimensional differential equa-
tions by expanding the wave function in terms of coupled
spherical harmonics yﬁ?b (f1,72). Like ordinary spherical
harmonics, the yi?b are orthonormal functions of the an-
gular variables. They are labeled by the total angular mo-
mentum quantum number L and the single-electron angular



momentum quantum numbers /; and l5. To calculate \Ifjc we
then need to evaluate the two-dimensional radial functions
¢1L112 in its angular momentum expansion,

-L
+ N 2
Vit = 3

Liiqy,la

G, (11, 12) Vi, (1, 72) . (5)

The angular momentum expansion of the right-hand side of
Eq. 4 is known analytically.

Substituting the expansions of WX and \Ifgl into Eq. 4
leads to sets of coupled, two-dimensional differential equa-
tions

(E = Hiy (r1) = Hig(r2)) i1, (1, 72)
—Z<l1l2||lilé>L’(L/)lIiyl/2(Tl,72) :XlLll2(Tla'r2) (6)

1,14
where the X1L12 are the radial functions from the expansion
of the right-hand side of Eq. 4, the {Ll:]|l1l5)r are two-
dimensional coupling potentials arising from the electron-
electron interaction, and the H; are the one-dimensional,
Coulomb radial Hamiltonians

142  (I+1) 1

Hi(r) = —=— . 7
() 2 dr? + 272 T (7)
Since total angular momentum is a conserved quantity there
is a separate set of coupled equations for each value of the

quantum number L.

3.3 Simplifying the boundary conditions

The key element in our formalism is the exterior complex
scaling transformation that simplifies the scattering bound-
ary conditions for each of the ¢1L112. Formally, the d)lle are
zero along the coordinate axes ('rl =0or ros = 0:) but for
large distances they are unbounded, oscilatory functions. In
the absence of ionization the boundary conditions for large
distances can be treated by matching to known asymptotic
forms. No such usable asymptotic form is known for ioniza-
tion.

We avoid having to explicitly specify the asymptotic form
for ionization by calculating the 1;')%112 on a complex contour
[20, 16]. This transformation of the Schrodinger equation,
called exterior complex scaling (ECS), was invented by Si-
mon [24] to study molecular resonances in scattering theory.
Both radial coordinates are rotated into the upper half of the
complex plane beyond some distance Rg. This coordinate

mapping,

- { no r < Ry, (8)

R0+(T—R0)6m, T ZRo,
(where 0 < n < 7/2) defines a box between zero and Rg in
r1 and r2 where both coordinates are real. Outside of that
box at least one coordinate is complex. The effect of such
a coordinate transformation on a purely outgoing wave is
to transform it into a exponentially decaying function be-
yond Ro. An example of a z/Jlle calculated with the ECS
transformation is shown in Figure 9. The calculated z/Jlle
are identical to the unscaled 1;’)%112 inside the interior box
but decay exponentially for either ri1 or r2 greater than Ro.
Thus, ECS simplifies the scattering boundary conditions so
that the transformed z/Jlle satisfy Dirichlet boundary con-
ditions.

0 0
Ago|dos |dop2 |dos ﬂ/Jo,o X0,0
dio |Aia|diz |d h9 ?
1,0 1,1|d12 1,3 Y11 X1,1
d2o |d21 |Az2|dags w82 — ng
dso |dsg |das |A h9 8
3,0 3,1 3,2 3,3 V3.3 X3,3

Figure 1: Block-matrix structure of the coupled
equations (Equation 6) using L = 0 as an exam-
ple. The di;, are diagonal matrices and the A;;
are sparse, not diagonal, matrices.

3.4 The matrix problem

We solve the coupled equations in Eq. 6 for the ¢lLll2 on a
two-dimensional radial grid using finite difference to approx-
imate the derivatives. This results in a large linear system
with a block-matrix structure illustrated in Figure 1. The
dimension of each block is the number of grid points, and
the number of blocks is the number of partial wave terms re-
tained in the coupled equations. The matrix is complex non-
Hermitian and non-symmetric. The right-hand side vector
is formed from the values of each of the X1L112 stored con-
tiguously. Likewise, the solution vector is partitioned so
that individual segments store the values of the correspond-
ing 1[)%112. The ordering of the (l1,12) pairs is determined
for each value of L by guessing the relative importance of
the individual terms in the angular momentum expansion in
Eq. 5.

Diagonal blocks, Ay, i,, are matrix representations of the
two-dimensional operator,

Ay 1, = E—Hyy(r1) — Hiy(r2) = (bl ) . (9)

Each Ay, i, has the sparsity structure of a two-dimensional,
sixth-order (7-point formulas for each second derivative), fi-
nite difference Laplacian. The exact structure of the di-
agonal blocks is shown on the right-hand side of Figure 2.
The Ay, i, are complex, non-Hermitian because of the ECS
transformation and they are non-symmetric because of the
high-order finite difference formulas. The off-diagonal blocks
are diagonal matrices representing the coupling potentials

In order to obtain an accurate description of ionization
we calculate the ¢1L112 out to distances of at least Rg = 80ago
for higher energies and Ry = 1404 for lower energies. One
ap = 5.29 x 10~ meters is the radius of a hydrogen atom
in its ground state. The primary grid spacings range from
0.2a¢ to 0.3a0. However, at small distances the grid spacing
is 0.05a0 because of the singularity in the Coulomb poten-
tial. The grids typically extend beyond Ry about 25a¢. In
this region the 1;’)%112 are exponentially decaying functions
and larger grid spacings may be used. The number of grid
points (in one dimension) used in our calculations ranges be-
tween 458 and 578 so the dimension of the individual blocks
in Figure 1 ranges between 209,764 and 334,084. By using
7-point finite difference formulas we can calculate the 1;5%112
very accurately on grids composed of sub-regions with uni-



form grid spacing. This is particularly important when using
the ECS transformation given in Eq. 8 which requires that
the finite difference formulas be generalized so that the grid
“spacings” are complex beyond Rp. The number of blocks in
the matrix equation illustrated in Figure 1 is determined by
the number of (I1,1;) pairs kept in the angular momentum
expansion (Eq. 5) for a particular value of L. Typically, the
number of blocks ranges between 6 (for L = 0) and 24 (for
higher L). Thus, for a single set of coupled equations the
size of the system of complex, linear equations that we solve
can be as large as 8 million.

4. OVERVIEW OF THE PARALLEL ALGO-
RITHMS

Because of the size of the matrix (dimension up to 8 mil-
lion), we need to use an iterative algorithm for the linear
systems. We devloped a two-level, iterative algorithm for
solving the sets of coupled differential equtions. Here we
give an overview of the algorithm and our parallelization
strategy. The detailed algorithms and performance appear
in Sections 5 and 6. Since there is no coupling between 1[)%112
with different values of the quantum number L, there is an
independent set of coupled equations for each L. Rather
than having an “embarrassingly paralle]” component of our
algorithm we solve the coupled equations for each L indepen-
dently. Thus, our two-level, parallel algorithm is designed
to solve a single set of coupled equations for some value of
L.

The first level of our algorithm is based on the block-
matrix representation of the coupled equations illustrated in
Figure 1. We solve the coupled equations iteratively using
solution to the uncoupled equations as a block-Jacobi pre-
conditioner. Each diagonal block in Figure 1 is the matrix
for one of the uncoupled equations (i.e. with (l1l2||l{3)r =0
for (I, 1) # (13,13)).

We also use an iterative algorithm for solving the uncou-
pled equations which are themselves large linear systems of
equations. This inner iteration level accounts for the bulk
of the computational work. For the preconditioning step in
the inner iteration we use a direct solver to solve the equa-
tions that have the same dimension but are more sparse than
the original matrix. For our application, the key advantage
of using the iterative algorithm for solving each uncoupled
equation, compared with using a direct solver, is that much
less memory is required for storing the LU-factors of the pre-
conditioner than storing the factors of the original matrix.
Because of the memory savings we can use a smaller number
of processors per (l1,l2) pair in the coupled equations.

Sparse direct solvers are much harder to parallelize, a task
much too involved for an application programmer to spend
time on. In recent years, some new algorithms and software
packages have emerged which exploit new architectural fea-
tures, such as memory hierarchy and parallelism. Examples
of publically available, parallel unsymmetric solvers include
MUMPS [1] (multifrontal algorithm), SPOOLES [3] (left-
looking algorithm), SuperLU [14] (right-looking algorithm),
and WSMP [12] (multifrontal algorithm). WSMP is tuned
particularly for the IBM SP architecture, however, it only
has support for shared memory parallelism. MUMPS does
not have support for complex matrices. In a separate work,
we compared MUMPS and SuperL.U only for the real matri-
ces on the Cray T3E, up to 512 processors. SuperLU often

uses less memory and scales better, and MUMPS is usually
faster on smaller number of processors. See [2] for detailed
comparison results. For our application, SuperLLU seems to
be the only choice because of support for both complex ma-
trices and distributed memory machines.

In solving these subsystems using SuperLU, we first re-
order the equations and variables using a minimum degree
algorithm [15], applied on the graph of A7+ A, to reduce the
fill-ins in the LU-factors. In the initial stage of the develop-
ment, we also experimented with nested dissection ordering
applied on AT + A, but the fill reduction is not better than
using minimum degree ordering for our 2D meshes. So we
did not pursue that any further.

The block-matrix structure (see Figure 1) provides a natu-
ral, “coarse” level of parallelism. We divide the total number
of processors into processor subgroups of equal size. Each
subgroup is assigned to a particular ({1, {z) pair. Therefore,
the number of processor subgroups scales directly with the
number of terms (for a particular L) that are kept in the an-
gular momentum expansion given in Eq. 5. The bulk of the
computations, such as solving individual uncoupled equa-
tions, are then local to individual subgroups. We typically
use four processors for each subgroup. In the case of the
Cray T3E-900, on which these codes were initially devel-
oped, this was the minimum number of nodes required for
solving a single uncoupled equations because of memory lim-
itations. On newer machines such as NERSC’s current IBM
SP it is possible to solve the same uncoupled equations with
fewer processors, but we still find that using four processors
per subgroup strikes a good balance between absolute time
and efficiency.

5. UNCOUPLED EQUATIONS ASPRECON-
DITIONER

5.1 Solving the uncoupled equations

Our iterative algorithm for solving the coupled equations
in Eq. 6 requires solution to uncoupled equations, defined
by setting (l152]|l115)r = 0 for (L,l) # (I1,15), that have
the form

L L \
Ay X, = b1y (10)

where Ay, i, is shown in Eq. 9. Even for a single uncoupled
equation the dimension of the linear system can be very
large, up to 334,084 in production runs and more than 2
million for testing purposes. Each uncoupled equation is
solved by the processor group assigned to that ({1, ;) pair.
Since this is the most computationally intensive step in our
algorithm most of the time in solving the coupled equations
is spent in computations that are local to processor groups.

The matrix structure of the uncoupled equations (for a
very small example) is pictured in the right-hand side of
Figure 2. The structure of the corresponding LU-factors
is shown in the right-hand side of Figure 3. Direct LU-
factorization of the high-order, finite difference matrix will
quickly exhaust available time and memory resources as we
scale up the size of the system. Ultimately, we need to
solve many of these systems simultaneously. Thus we need
a parallel iterative solver to solve the uncoupled equations
with a modest number of processors.

Unfortunately, the ECS transformation, which is neces-
sary for simplifying the scattering boundary conditions, causes
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Figure 2: Sparsity structure of the finite difference
matrix of the two-dimensional Hamiltonian. On the
left is the low-order matrix which uses 3-point for-
mulas for the second derivates. On the right is
the high-order matrix which uses 7-point formulas.
These examples are very small (144 total grid points
extending only to 2a¢) so that the basic structure can
be seen.
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Figure 3: Sparsity structure of the LU factors of
the matrices in Figure 2. The factors U and L are
upper and lower-triangular matrices, respectively.
The sparsity of the sum L + U is shown here.

Preconditioned Conjugate Gradient Squared
Algorithm
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if error < tolerance exit

end

Figure 4: The preconditioned Conjugate Gradient
Squared algorithm based on the one given in [7,
pp-26]. Matrix M is the preconditioner. We define
the arbitrary vector 7 in [7] to be the driving term
b. Also the full residual r'*) is computed in each it-
eration rather than updating the previous residual.



Convergence of CGS Algorithm
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Iterative Algorithm

factorization time: 42.4 seconds

single solve time:  1.57 seconds
solves required: 14

iteration time: 24.0  seconds
total time: 66.9 seconds

Direct Solution

factorization time: 897 seconds
solve time: 2.93 seconds
total time: 937 seconds

Figure 5: Convergence of the CGS algorithm for a
single “uncoupled” equation for three grids which
are real out to different values of Ry is shown on the
left. The time required for an Ry = 60ao calculation
on a single 200Mhz Power3 CPU is shown on the top
right. In this case, the total number of grid points is
88,804. The preconditioner is applied twice in each
CGS iteration. The time required to solve directly
is shown on the bottom right.

each A;, 1, to be very ill-conditioned. We tested various it-
erative algorithms on small, one-dimensional problems to
see which algorithms are compatible with ECS. Every al-
gorithm that we tried failed to converge for the test prob-
lems without preconditioning. Furthermore, using various
standard preconditioners failed to cause any of these algo-
rithms to converge. We obtained convergence only when
we solved linear equations with the lowest order (i.e. three-
point formula) finite difference matrix as a preconditioning
step in iteratively solving the linear equation for high order
(seven-point formula) finite difference. Using low-order fi-
nite difference as a preconditioner for solving the high-order
matrix equation caused a few of the Krylov subspace meth-
ods (CGS, Bi-CGStab, and GMRES) to converge. All had
about the same stability and convergence rate. We chose to
use the CGS algorithm [7], outlined in Figure 4, because it
requires the least amount of memory.

Convergence of this iterative algorithm is shown in Fig-
ure 5. The preconditioning step is accomplished by using
SuperLLU to directly solve the low-order matrix equation.
Also given is a comparison between the time required for
the iterative algorithm and for using SuperLU to directly
solve the high-order matrix equation. As can be seen in Fig-

ure 2, the low-order finite difference matrix is much sparser.
Therefore, an LU-factorization algorithm that takes advan-
tage of the structure of the matrix can solve the low-order
equations much more quickly than the high order equations.
Why this is so is illustrated by the sparsity patterns of the
corresponding LU factors, shown in Figure 3. The timings
listed in Figure 5 includes a breakdown of the time spent
in different parts of the algorithm. SuperLU computes the
LU-factors for the low-order matrix in much less time than
it takes for the high-order matrix. Even though many tri-
angular solutions using the LU-factors are required, the to-
tal time of the iterative algorithm is about 7% of the time
needed for the direct solution.

5.2 SuperLU as preconditioner for uncoupled
equations

A distinct advantage of the direct method is its robustness,
in the sense that it involves a fixed number of floating point
operations independent of the conditioning. Sparse Gaus-
sian elimination is much harder to parallelize than iterative
methods, mainly because of the fill-ins in the LU factors.
If we use classical partial pivoting, those fill-ins are gener-
ated on the fly as factorization proceeds, which requires dy-
namically adaptive data structures to represent the matrix.
This incurs prohibitive cost on parallel machines because of
many fine-grained messages. Our novel static pivoting strat-
egy overcomes this difficulty and maintains numerical sta-
bility [14]. Another challenge to parallelizing this algorithm
is the existence of many task dependencies among different
elimination steps. We have to exploit as much as possible
the parallelism across multiple steps while preserving these
dependencies. We spent much time improving the parallel
factorization and triangular solve algorithms.

5.2.1 matrix distributionand parallel algorithms

The matrix partitioning is based on the notion of an un-
symmelric supernode, which consists of consecutive columns
of I with the diagonal block being full, and the same nonzero
structure elsewhere. This supernode partition is used as the
block partition in both row and column dimensions. Figure 6
illustrates such a block partition. The P processes are also
arranged as a 2D grid of dimension P, x P. = P. We use
2D block-cyclic layout, meaning block (I, J) (of L or U) is
mapped onto the process at coordinate (({ — 1) mod Py,
(7 — 1) mod P.) of the process grid. In this 2D mapping,
each block column of L is spread across every processor in
a single column of the process grid. For example in Fig-
ure 6, the second block column of L resides on the column
processes {1, 4}. Process 1 only owns two nonzero blocks,
which are not contiguous in the global matrix. The advan-
tages of this 2D mapping over a 1D mapping are reduced
communication, enhanced load balance and scalability. The
user can set the shape of the process grid, such as 2 x 3 or
3 x 2. The more square the grid, the better the performance
expected. This rule of thumb was used in our computations
to define the grid shapes.

The parallel sparse factorization algorithm is right-looking
and loosely synchronous. At the K-th step, it factors the
K-th block column of I and the K-th block row of U. Then,
using the outer-product of these two factored block column
and row, it performs the updates to the trailing submatrix.
All these operations are performed in parallel. The actual
implementation uses a pipelined organization and the non-



Global Matrix

Figure 6: SuperLU 2D block-cyclic mapping of ma-
trix to processors.

blocking send and receive (MPI_Isend/MPI Irecv) so that
independent tasks across multiple loop iterations are sched-
uled simultaneously, thus exploiting better parallelism and
overlaping computation and communications.

The triangular solve algorithm is fully asynchronous and is
based on a sequential variant called “inner product” formu-
lation. The execution of the program is completely message-
driven. Each process is in a self-scheduling loop, perform-
ing appropriate local computation depending on the type of
message received. This approach enables large overlap be-
tween communication and computation and helps overcome
the much higher communication to computation ratio in this
phase.

5.2.2 SuperLU performance and scalability

To illustrate the performance and scalability of Superl.U,
we report the results obtained with the high-order systems in
Table 1. The grid sizes were chosen so that with increasing
number of processors, the number of factorization operations
per processor is kept roughly constant. Table 1 lists the
grid sizes, the number of operations, the timings and the
megaflop rate per processor on the Cray T3E-900 (DEC EV-
5 processors, 256 Mbytes memory per processor, 450 MHz
clock rate) at NERSC.

For the LU factorization, the number of operations is al-
most constant per processor (& 8 x 109). The parallel time
increases slowly, and megaflop rate per processor decreases
slowly. The parallel efficiency drops slowly but still main-
tains at 50% level even with 64 processors. So the factor-
ization phase scales quite well. For the triangular solution,
the number of operations increases at a lower rate than the
factorization. But the megaflop rate per processor decreases
more rapidly, meaning the algorithm is less scalable. This
is because in this phase, there is a higher ratio of communi-
cation over computation. On the other hand, the triangular
solution time is always less than 4% of the factorization time.

5.3 Performance datafor uncoupled equations

The complex-scaled, 2D Hamiltonian matrices in our ap-
plication exhibit different SuperLU performance character-
istics than many other matrices, such as the 3D problems.
Here are our observations:

e The matrices are very sparse—about 5 nonzeros per
row in a low-order matrix or 13 nonzeros per row in a

high-order matrix, independent of the grid size. Fur-
thermore, the matrices remain sparse during LU fac-
torization. The fill-in growth rate of L + U over the
original A is between 10 and 20 for low-order matrices
with dimension up to 2 million. Whereas for many 3D
problems, the growth rate can be more than an order
of magnitude higher.

e The matrix structure is very irregular in that the dense
blocks identified in I and U are very small. Therefore,
more integer indices are required to represent the spar-
sity structure, resulting in more indirect addressing in
the computations.

These properties lead to lower memory usage and possi-
bly faster runtimes, but also lower megaflop rates. Table 2
gives the detailed matrix statistics and our solver perfor-
mance for several largest uncoupled equations (dimension
up to 2 million). For each grid size, we compare the CGS
solution times with SuperLLU solving either low-order equa-
tions as preconditioner or high-order equations directly. The
average block size is smaller for low-order matrix, and the
fraction of integer indices (hence the amount of indirect ad-
dressing) is higher. That is why the megaflop rate is much
lower for the low-order matrices. This is particularly true
for the triangular solves, because there is less computation
but more communication. Although SuperLU gives a much
better megaflop rate for high-order matrices in both factor-
ization and triangular solution, the total memory require-
ment is about an order of magnitude larger. Sometimes
direct solution of high-order matrix can be faster (see the
case Rg = 180) because the triangular solution is much more
efficient and scalable for the high-order matrix.

For such sparse systems, the metric for high performance
cannot be a mere megaflop rate, because there are many un-
avoidable integer operations and indexed loads/stores that
do not use the floating point unit. What is important is the
time for solution and the memory usage. Table 3 illustrates
this point. Here, we compare three solvers for problems of
increasing size on a single processor. The LAPACK banded
solver delivers the highest megaflop rate, but is the slowest
and most demanding in memory. It uses simple and efficient
data structures at the expense of storing and operating on
many zero entries in the matrix. Using SuperLU to directly
solve the matrix equation gives slightly reduced megaflop
rates, but takes much less time. The iterative solver strikes
a good balance between numerical efficiency and the use of
computer resources, therefore it is the fastest and demands
the least amount of memory, even though it gives the lowest
megaflop rate. Just as important, it increases the size of the
problem that we can solve with a fixed amount of memory.

Performance of our parallel CGS algorithm using SuperLU
on the low-order matrix as preconditioning is listed in Ta-
ble 4. The time is broken down into Factor time from Su-
perLU, Iteration time, and Total time. The total time is
the sum of the first two plus some set-up time. For these
matrices, it takes 7 to 8 CGS iterations to converge. Each
iteration requires two triangular solutions from SuperLU,
which accounts for a large fraction of the iteration time. It
is clear that SuperLU factorization scales quite well, and it
constitutes a large fraction of the total time on smaller num-
bers of processors (up to about 8). For more processors, the
CGS iteration time starts to surpass the factorization time,
because the triangular solution algorithm does not scale as



Table 1: SuperLU performance scaling with the high-order systems on the CRAY T3E-900.

Nprocs 1 2 4 8 16 32 64
Gnd S1zZe Ro =21 Ro =29 Ro =39 Ro = 50 Ro =65 Ro = 80 Ro = 100
Matrix order 20,164 30,276 45,796 66,564 101,124 142,884 209,764
Nonzeros in A (10%) 0.3 0.4 0.6 0.9 1.3 1.8 2.7
Nonzeros in I, + U (106) 6.9 11.5 19.3 31.1 51.6 80.3 128.1
LU Factorization
Flops (109:) 8.7 17.3 35.1 69.3 134.7 257.6 498.3
Time (Seconds) 28.4 31.9 34.0 35.8 39.9 43.5 52.5
Mflops 307.7 541.6 1031.5 1937.2 3373.5 5921.3 9490.4
Mflops per proc 307.7 270.8 257.9 242.2 210.8 185.1 148.3
Triangular Solution
Flops (106:) 55.9 92.9 156.0 252.0 417.0 648.7 1034.7
Time (seconds) 0.8 1.0 1.0 1.2 1.2 1.4 1.5
Mflops per proc 67.8 46.8 39.0 26.4 21.9 14.1 10.4

Table 2: CGS solution of uncoupled equations on 64 processors of the IBM SP at NERSC. SuperLU solves
either the low-order systems as preconditioner or the high-order systems directly. “Average block” is the
average number of columns in a dense block, see Figure 6. “%Index” is the percentage of integer indices
used in the compact sparse storage over the number of nonzeros in I and U.

Matrix Properties Solver Performance

Gnd Order Nonzeros Fillin Average %Index Memory | Factor Tri. Solve CGS
size (10%) (10%) ratio block (MB) | sec. (Mflops) sec (Mflops) time
Ro =180

low-ord 0.6 3.0 15 4 12% 844 | 53.5 (1000)  82.8 (5) 2307.7

high-ord 0.6 7.9 55 8 4% 7149 | 230.8 (10822) 21.5 (163) 415.0
Ro = 240

low-ord 1.0 5.2 17 8 8% 1599 | 81.1 (1431) 60.2 (13) 2116.1

high-ord 1.0 13.4 64 14 3% 14096 | 1209.3 (5570) 25.6 (271) 2387.6
Ro = 340

low-ord 2.0 10.0 19 8 8% 3295 | 188.3 (1792) 371.8 (4) 6361.9

high-ord 2.0 26.1 out of memory

Table 3: Comparison of times in seconds (and Mflops) to solve a single uncoupled equation using the iterative
algorithm, direct solution with SuperLU, and direct solution with a banded solver in LAPACK, on a single
200 MHz Power3 CPU.

Grid size 10 20 40 60 80 100
Matrix Order 9,604 19,044 47,524 88,804 142,884 | 209,764
Banded Solver:

factor 11.7 (568) | 44.1 (592) | out of

solve 0.29 (78) 0.90 (70) | memory

total 12.0 45.0

SuperLU (direct):

factor 5.83 (433) | 17.0 (460) | 76.8 (505) | 220 (503) | 504 (509)

solve 0.34 (93.8) | 0.48 (106) | 1.40 (115) | 2.93 (118) | did not

total 7.63 21.2 91.5 281.5 finish

CGS + SuperlLU:

factor 0.70 (115) | 1.55 (153) | 4.86 (212) | 10.5 (258) | 19.6 (288) | 33.2 (324)
iteration 2.45 (22) | 5.03 (24)" | 13.0 (26) | 24.0 (29) | 30.6 (30) | 60.5 (30)
total 3.96 8.96 28.4 66.9 138 254




Table 4: The parallel runtimes in seconds of the preconditioned CGS algorithm to solve a single uncoupled

equation of various sizes on the IBM SP at NERSC, with 200 MHz Power3 CPUs.

Grid Matrix Time #Processors

size dimension 1 2 4 6 8 12 16
Factor 42.4 27.1 17.3 14.5 13.3 11.7 10.7

Ry =60 88,804 Iter. 24.0 21.7 19.9 19.3 14.3 18.4 23.8
Total 66.9 49.2 37.7 34.2 27.9 30.5 34.8
Factor 192.4 | 112.9 65.9 51.1 45.1 37.0 31.6

Ro =100 | 209,764 ITter. 60.5 51.3 47.2 48.5 35.5 46.6 53.4
Total 253.9 | 165.2 | 114.2 | 100.5 81.7 84.6 86.1
Factor 852.6 | 327.3 | 184.8 | 142.9 | 111.8 86.7 73.4

Ro = 140 | 381,924 Tter. 155.2 | 108.1 | 100.5 | 104.5 76.0 96.2 | 130.3
Total 1037.6 | 437.3 | 287.1 | 249.2 | 189.5 | 184.7 | 205.5
Factor 411.4 | 294.6 | 257.4 | 192.1 | 1474

Ro =180 | 605,284 Iter. 160.8 | 161.8 | 128.2 | 156.9 | 203.6
Total 575.1 | 459.3 | 388.6 | 351.7 | 353.9

well.

6. ITERATIVE SOLUTION TO COUPLED
EQUATIONS

6.1 Parallel implementation

We solve the coupled equations (Eq. 6) with an itera-
tive algorithm using solution to uncoupled equations (Eq.
10) as a preconditioner. Since a preconditioned CGS algo-
rithm worked well in solving the uncoupled equations, we
also use CGS for solving the coupled equations. We have
found that convergence is reliable in all cases of interest
with convergence being faster at higher energies where the
diagonal-blocks (see Figure 1) are more dominant.

Our basic parallelization strategy is to partition the total
number of processors into small subgroups of equal num-
bers (usually four or six) of CPUs. Each subgroup is then
assigned to a particular (1, l;) pair. In doing this we exploit
the symmetry relation between (l,12) and (2, L),

L \ ) L \ \
wl211(72,T1) = (—1)5101112(T1,T2,) ) (11,)

by explicitly storing only the 1!){112 with I < 3. In the
iterative algorithm we include the &1 > I terms implicitly.
Therefore, the number of processor subgroups is equal to
the number of (l1,I2) terms kept in the coupled equations
with & < l;. However, the number of ({1, ;) blocks in the
matrix equation that we are solving may actually be as high
as twice that number, depending upon the value of L.

The preconditioning steps are by far the most time con-
suming operations in the algorithm. Since these are just so-
lutions to the uncoupled equations the preconditioning steps
consist of calculations that are entirely local to each proces-
sor subgroup. The preconditioner is applied twice for each
CGS iteration and is accomplished by each processor sub-
group implementing the algorithm described in Section 5.
The second most time-consuming operations in the algo-
rithm are matrix-vector multiplies between the diagonal sub-
blocks Ay, i, and the vectors for their corresponding ¢lL112~
Again, these operations are entirely local to a processor sub-
group. The only operations that require communication
between different subgroups are vector operations such as
vector-vector adds, diagonal matrix-vector multiplies, and
scalar-vector multiplies.

6.2 Performance

Typically, we solve 20 separate sets of coupled equations
for each collision energy. We must calculate separate wave
functions for the two spin symmetries (S = 0 and S = 1)
each of these requires solving the coupled equations for total
angular momentum quantum numbers ranging from L = 0
to I = 9. The size of each calculation depends on the size
of the two-dimensional grid used and the number of ({1, l2)
pairs. As an example, a calculation for 20 eV collision en-
ergy used a grid that extends to 130ao and has 209,764 two-
dimensional grid points. We can use a smaller grid for higher
energies while a large grid is required for lower energies. For
a particular energy, the same two-dimensional grid is used
for every u’)lLll?.

We include a minimum of six (I1,{2) pairs in each coupled
equation. For I = 0 and L = 1 this is usually sufficient.
With increasing L we need to include more terms in the
coupled equations. For L = 6 we typicaly include 16 (1, l2)
pairs. Beyond L = 6 the relative importance of individual
1[)%112 to the angular momentum expansion diminishes and
we can slightly reduce the number of (1, ;) pairs per cou-
pled equation. Higher energies require more (I, l3) pairs per
coupled equation, as many as 24 in our calculations.

In Figure 7 we present examples of the convergence of the
iterative algorithm for solving the coupled equations. The
behavior that we typically see is that the error in the com-
puted residual increases during the first few iterations, but
then decreases fairly steadily. The rate of convergence is
dependent upon a number of factors: the number of (1, l2)
pairs, the total energy, and the quantum number L. For suf-
ficient numbers of (l1,l2) pairs the convergence rate depends
sublinearly on the number of included pairs. Whenever we
list the number of (1, l2) pairs for a given coupled equation
we are only counting those for which ;1 < I so the actual
number of terms in the coupled equation could be higher by
as much as a factor of two, depending upon the value of L.

The energy being considered also affects the rate of con-
vergence. For higher energies, the coupling between different
u’)lLll? is relatively weak and the iterative algorithm converges
more rapidly than at lower energies. The two energies used
as examples in Figure 7 represent the extremes of this de-
pendence. In the case of 54.4 eV collision energy, the highest
that we have considered, the coupled equations always con-
verge within a dozen CGS iterations. The lowest collision
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Figure 7: Convergence of the CGS algorithm for
the coupled equations with singlet spin symmetry
for various total angular momenta L. Error of the
calculated scattered wave is plotted for collision en-
ergies of 15.6 €V (squares) and 54.4 eV (diamonds).
For each I the number of blocks included, counting
only those with /1 <[y, is listed.

energy we have considered is 15.6 €V, just 2 eV above the
ionization threshold. At this energy the convergence rate is
much slower and more dependent on L than at the higher
energy. We have found that the present algorithm some-
times fails to converge for collisions energies within about 1
eV above the ionization threshold.

In our production runs we use the smallest number of
processors per (l1,lz) pair, usually four, that will solve an
uncoupled equation in a reasonable amount of time. This is
a prudent management of resources because the solve step
using the LU factors computed by SuperLU does not scale
well. In our two-level iterative algorithm the SuperLU solve
step is executed hundreds of times. From Figure 7 we see the
number of outer CGS iterations ranges from 12 to 35. Since
each CGS iteration requires two preconditioning steps, 24 to
70 solutions of each uncoupled equation are required to solve
one coupled equation. FEach uncoupled equation solution
typically require 8 CGS iterations for a total of 16 Super.U
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Figure 8: Equal-energy sharing, coplanar TDCS for
25 €V incident energy with 6, fixed. Internormal-
ized measurements [22], originally reported in arbi-
trary units, were multiplied by 0.16 to fit calculated
cross section. Solid and dashed curves represent two
different methods of calculating the TDCS [5,4] .

solves. Thus, between 384 and 1120 SuperL.U solves for each
(L, 12) pair are used to converge a set of coupled equations.

The total number of processors used scales directly with
the size of the system and is four times the number of (11 , 12)
blocks, ranging from 24 to 96. Using the example of a
209,764 point grid we are solving for between 1.2 million
and 5 million double precision, complex numbers for each
coupled equation. The actual dimension of the linear system
being solved iteratively may be as high as twice that number.
Production runs generally take 2 to 3 minutes per iteration
on an IBM SP with 200 MHz Power 3 CPUs. Taking into
account the set-up time for computing the LU factors and
the extremely variable number of iterations required the to-
tal time for solving a coupled equation ranges from 30 to
500 minutes on the SP. The longer runs are generally ac-
complished in multiple stages. Our codes are written so
that the solution vectors are periodically saved during the
iterative algorithm. If convergence has not been reached
within pre-determined limits, or if a system crash occurs
before completion, the iterative algorithm is restarted using
the last solution that was saved.

7. SCIENTIFIC RESULTS

The real significance of our work lies in the scientific ac-
complishment. Our results represent the first truly complete
solution of the electron-impact ionization problem. This
would not have been possible without modern, scalable nu-
merical algorithms, such as SuperLU, and massively parallel
computers, such as the Cray T3E and the IBM SP. With
these tools we were able to implement the exterior com-
plex scaling formalism on a scale large enough to produce
accurate and detailed differential cross sections for electron-
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Figure 9: Real part of an example radial function. In this example l; = [; so the radial function is symmetric
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impact ioniztion.

A comparison between some of our calculated differential
cross sections and the corresponding experimental data is
shown in Figure 8. More complete sets of results have been
published elsewhere [21, 4, 13, 5]. This experimental data
is available only in arbitrary units so the entire set of data
must be multiplied by a single normalization factor which
was chosen based on comparison with our calculations. Even
so, agreement in shape between our calculations and the
experiment is a remarkable testimony to the accuracy of
our calculated results. However, our goal was not just to
reproduce the experimental data. The experiments are very
difficult and only a very limited set of data exists [22], most
of which is available only in arbitrary units. Ultimately,
a complete description of electron-impact ionization must
come from a theoretical treatment.

The computationally intensive part of this endeavor was
calculating the wave function using the algorithm described
in the preceding parts of this paper. An example of one
of the two-dimensional radial functions used to construct
the wave function is shown in Figure 9. Although an in-
termediate step in the process of calculating the cross sec-
tions, the calculated wave functions, themselves, represent
a significant scientific acheivement. Never before has a fully
converged wave function that describes two outgoing elec-
trons been calculated out to such large distances. These
wave functions will assist scientists in better understanding
the complex dynamics of electron-impact ionization as they
seek to develop theoretical and numerical methods appro-
priate for more complex systems.
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